» » Особенности структуры сплавов
14.01.2016

Легирование металла высокопрочных сплавов приводит к образованию твердых растворов замещения или внедрения, а в случае превышения предела растворимости — к образованию избыточных фаз.
В общем случае строение металлов и сплавов характеризуется наличием структур различного масштаба, которые можно классифицировать следующим образом.
Атомно-кристаллическая структура. На атомарном уровне (размер 10в-10 м — 1 А) имеет место атомно-кристаллическая структура в виде упорядоченного расположения атомов (ионов) в узлах кристаллической решетки. На рис. 1.1 приведены наиболее распространенные типы атомно-кристаллических структур: кубическая гранецентрированная (ГЦК), кубическая объем но центрированная (ОЦК), гексагональная плотноупакованная (ГПУ). Упорядоченное расположение атомов в кристаллах характеризуется наличием ближнего и дальнего порядка. Координационное число, которое определяется числом ближайших соседних атомов, равно 12 для структур ГЦК и ГПУ и 8 для ОЦК-структуры. Согласно модели жестких шаров коэффициент заполнения пространства кристаллической решетки составляет 0,74 для ГЦК- и ГПУ-структур и 0,68 для менее плотной ОЦК-структуры.
Особенности структуры сплавов

В рассматриваемых кристаллических решетках существует два типа междоузлий или пустот: октаэдрические и тетраэдрические (рис. 1.1).
Более крупные — октаэдрические — пустоты окружены шестью атомами, расположенными в вершинах правильного октаэдра. Более мелкие пустоты — тетраэдрические — распложены в вершинах тетраэдра,
Атомно-кристаллическая структура металлов и сплавов может быть представлена в общем случае ограниченным набором элементарных ячеек, характеризующих строго определенное расположение положительных ионов в пространстве, параллельными переносами которых (трансляциями) в трех измерениях можно построить всю кристаллическую решетку.
Плотное заполнение пространства «без просветов» возможно при определенном наборе элементов симметрии. В связи с этим в кристаллах отсутствуют оси симметрии пятого порядка и более высокого, чем шестой порядок.
Образование твердых растворов замещения происходит путем замещения атомов (ионов) в узлах кристаллической решетки основы сплава (матрицы) и определяется, в частности, размерным фактором. При различии размеров атомов, не превышающем 15%, существует непрерывный ряд твердых растворов, а при большем различии размеров атомов образуется твердый раствор с ограниченной растворимостью.
Твердые растворы внедрения по модели плотной упаковки жестких шаров образуются в результате заполнения междоузлий в кристаллической решетке матрицы. Растворимость элемента внедрения зависит от количества и размеров пор. Как правило, растворимость элементов внедрения мала, в частности предельная растворимость наиболее распространенного легирующего элемента внедрения в высокопрочных сплавах — углерода — составляет 0,01%, и в связи с этим в высокопрочных сплавах происходит выделение фаз внедрения.
Фазы внедрения, к которым относятся карбидные, боридные, нитридные, гидридные фазы, которым придается существенное значение в металловедении высокопрочных сплавов, обладают металлическими свойствами и образуются в результате заполнения межузлий кристаллической решетки металлических атомов (ионов) атомами внедрения. Оптимальное соотношение размеров атома внедрения и атомов матрицы согласно правилу Хегга ≥ 0,59. Следует отметить, что кристаллическая решетка металлических атомов в структуре фаз внедрения отличается от кристаллической решетки соответствующего металла.
Интерметаллические соединения представляют собой промежуточные фазы, т. е. фазы, имеющие кристаллическую решетку, отличную от решеток, образующих фазу компонентов, и обладающие металлическими свойствами. На диаграммах состояния интерметаллические соединения характеризуются областью гомогенности, поскольку их состав может отличаться от определенного стехиометрического состава. Интерметаллидные фазы, характеризующиеся отсутствием заметной растворимости, плавление которых происходит без изменения состава (разложения), т. е. конгруентно, относят к дальтонидам. Интерметаллидные фазы с широкой областью гомогенности, на линии ликвидуса которых отсутствует сингулярная точка и плавление которых происходит инконгруентно, представляют собой бертоллиды.
По своей природе интерметаллидные фазы делят на ряд классов; электронные соединения, структура которых определяется электронной концентрацией; интерметаллидные фазы, имеющие сложные решетки.
Особенности структуры сплавов

В высоколегированных сплавах образуются интерметаллидные фазы σ, Р, μ, R, χ, фазы Лавеса, которые имеют сложную элементарную ячейку, содержащую ≥ 20 атомов (рис. 1.2). При анализе этих фаз используется представление атомно-кристаллической структуры путем заполнения решетки координационными полиэдрами (многогранниками). Идея выделения координационных полиэдров в кристаллической структуре связана с образованием устойчивых группировок атомов, которые сохраняются в кристалле как целое и поэтому рассматриваются как структурные единицы.
Координационные полиэдры не заполняют целиком объем кристаллической решетки в отличие от элементарных ячеек и таким образом условно отделяют заполненную часть от незаполненной. Координационные полиэдры образуют кристаллическую структуру в результате сочленения между собой по вершинам либо по ребрам или граням.
Таким образом, структура интерметаллических соединений, которые трудно или невозможно представить в виде плотных упаковок жестких шаров, характеризуется сохранением тенденции к наибольшему заполнению пространства. Рассмотренная модель представления кристаллической структуры применяется, например, в случае интерметаллидных фаз σ, Р, μ, R, χ, образованных металлами с несколько различающимися размерами атомов и имеющих сложную элементарную ячейку. Для всех этих фаз характерны большие координационные числа и высокая степень компактности.
Упорядоченное расположение атомов в этих фазах связано с тем, что более крупные атомы занимают позиции с большим координационным числом. На ширину области гомогенности влияет соотношение атомных радиусов, однако определяющим фактором в образовании рассмотренных фаз является электронная концентрация.
Исследование атомно-кристаллической структуры осуществляется дифракционными методами структурного анализа: рентгеновским структурным анализом, электронографией и нейтронографией. Методы туннельной микроскопии, микроскопии атомных сил, атомного ионного проектора позволяют изучать положение отдельных атомов на поверхности твердых тел.
Кристаллическая структура металлов и сплавов существенным образом влияет на их физико-механические свойства. Анизотропия, т. е, различие свойств по разным направлениям, повышенная склонность к хрупкому разрушению, хладноломкость, ограничение систем скольжения при деформации определяются кристаллической структурой сплавов, структурно-фазовыми составляющими.
Аморфные структуры по уровню пространственного разрешения являются типом атомной структуры, который характеризуется наличием ближнего атомного порядка по аналогии со структурой жидкости и отсутствием дальнего порядка, характерного для кристаллического состояния. Таким образом, твердые тела с аморфной структурой представляют собой переохлажденные жидкости — металлические стекла.
Дислокационная структура. Кристаллическая структура, построенная трансляциями элементарной ячейки, является идеальной. Реальные кристаллические решетки металлов и сплавов имеют дефекты: нульмерные (точечные) — вакансии и межузельные атомы; одномерные (линейные) — дислокации; двухмерные (поверхностные) — границы блоков, зерен, дефекты упаковки и др.; трехмерные (объемные) — пустоты, поры, включения.
Дефекты кристаллической структуры оказывают существенное влияние на свойства металлов и сплавов. В металловедении дислокационная структура характеризует плотность, распределение и природу отдельных дислокаций, а также их скопления с образованием субзерен, зарождение рекристаллизованных зерен.
Основные типы дислокационных структур металлов и сплавов — ячеистая, полигональная (субзеренная) и рекристализованная структуры.
По сравнению с атомно-кристаллической структурой дислокационная структура соответствует более низкому уровню разрешения в пределах от 10 нм до сотен микрометров.
Методами исследования дислокационных структур являются: прямой метод дифракционной электронной микроскопии, метод рентгенографии, в определенной мере метод металлографии.
Влияние дислокационной структуры на свойства металлов и сплавов проявляется, например, в эффекте упрочнения при интенсивной пластической деформации (наклепе) и разупрочнения при возврате и рекристаллизации.
От дислокационной структуры существенно зависят прочностные свойства металла. Целенаправленно изменяя дислокационную структуру за счет выбора химического состава сплава, режимов его термической, термомеханической обработки, можно обеспечить высокий уровень свойств.
Тонкая, электронно-микроскопическая структура. Метод дифракционной электронной микроскопии в общем случае позволяет исследовать тонкую, или электронно-микроскопическую, структуру, т. е. структуру металла с дислокациями, дефектами упаковки, двойниками, а также структуру сплавов на стадии зонного распада и фазового старения при увеличениях 10в4—10в5.
Наноструктура, ультрадисперсная структура. Характеризуется размером областей с кристаллической структурой на уровне 10в-9 м (1 нанометр). В связи с этим значительная доля атомов (порядка 50 %) находится на поверхностях — границах кристаллитов, образуя кристаллически не упорядоченные пограничные слои. Такого типа «композиционная» структура обладает уникальными свойствами.
Ультрамелкозернистая структура (микрокристаллическая структура). Представляет собой структуру с размером зерна менее 10 мкм. Наличие ультрамелкозернистой структуры в металлических сплавах является необходимым условием проявления эффекта сверхпластичности.
Микроструктура. Металлографически выявляемая структура металлов и сплавов, для которой характерен уровень разрешения светового оптического микроскопа с увеличениями порядка 100—1000 раз. Методы рентгенографии, сканирующей электронной микроскопии также применяются для анализа микроструктуры металлов и сплавов,
Основными элементами микроструктуры являются зерна, субзерна, ячейки, дендриты, границы зерен, междендритные области, выделения частиц различных фаз, структурные составляющие (например, эвтектика, эвтектоид и др.), дефекты структуры в виде пор, включений, микротрещин и др. Роль микроструктуры в обеспечении требуемых физико-механических свойств сплавов невозможно преувеличить. Размер зерна, внутрикристаллическая (дендритная) ликвация (химическая и структурная неоднородность), преимущественная пространственная ориентация зерен (текстура), гомогенные и гетерогенные выделения частиц второй фазы, образование зерен первичной и вторичной рекристаллизации — факторы, определяющие влияние микроструктуры на свойства высокопрочных сплавов.
Этот тип структуры характеризуется довольно широким интервалом размеров (масштаба) структурных элементов от - 1 мкм до - 1 мм. Минимальные размеры элементов микроструктуры (~ 1 мкм) характерны для дисперсных структурных составляющих (перлит, сорбит в сталях), отдельных дислокаций и их скоплений в монокристаллах, зародышей рекристаллизации в деформированных металлах. Максимальные размеры (~ 1 мм) соответствуют крупнозернистым структурам.
Макроструктура. Выявляется при визуальном наблюдении или при наблюдении с небольшим увеличением отдельных образцов, а также изделий, полуфабрикатов, слитков массой до нескольких тонн.
Масштаб макроструктуры соответствует размерам образцов и изделий от нескольких миллиметров до нескольких метров.
Макроструктура выявляет различные виды зональной ликвации и пористости в слитках высоколегированных сталей и сплавов, неоднородность структуры, например в виде зон равноосных и столбчатых кристаллов в слитках, и др.
Влияние макроструктуры сплавов на свойства изделий проявляется, например, в виде формирования волокнистой структуры деформированных изделий, способствующей повышению конструкционной прочности (например, волокнистая структура коленчатого вала двигателя внутреннего сгорания). Элементами макроструктуры являются зерна первичной кристаллизации, а также дефекты структуры слитков в виде различных видов пористости, зональной ликвации, приводящие к снижению технологической пластичности высоколегированных сплавов.
Следует отметить, что в ряде случаев, в частности при анализе механизмов сверхпластичности, помимо рассмотренных структурных уровней структуры выделяют промежуточный тип структуры — мезоструктуру, определяемую как структуру промежуточного масштаба (уровня), соответствующего среднему размеру зерна.
Для современного металловедения характерен многоуровневый анализ структуры металлов и сплавов с учетом взаимосвязи между изменениями структуры различных уровней и степени их влияния но свойства. Синергетический подход и мультифрактальный формализм при анализе процессов формирования структуры материалов в сильно неравновесных состояниях рассматриваются как перспективное направление в материаловедении.
Разработка новых сплавов определяется выбором основы сплава (матрицы), легирующего элемента или комплекса элементов, заданием оптимальной их концентрации.
Диаграммы состояний высокопрочных сплавов обычно характеризуются наличием областей непрерывных и ограниченных твердых растворов легирующих элементов, образованием интерметаллидных соединений и фаз внедрения.
Особую роль играет характер распределения интерметаллидных фаз и фаз внедрения, обусловленный спецификой фазовых превращений (в виде отдельных частиц или, например, в виде эвтектики).
Кинетика распада пересыщенного твердого раствора оказывает существенное влияние на формирование структуры высокопрочных сплавов, в частности сплавов на основе никеля и алюминия.
Анализ соответствующей диаграммы состояния сплавов позволяет в предельном случае термодинамического равновесия определить физико-химические особенности взаимодействия элементов, типы образующихся фаз, таких, как граничные твердые растворы, промежуточные соединения (интерметаллидные фазы или фазы внедрения), структурно-фазовое состояние и эффективность упрочнения сплава.