» » Области применения циркония
06.02.2017

В настоящее время определились следующие области промышленного использования циркония:
1) керамика и огнеупоры,
2) производство эмалей и стекла,
3) производство сталей и сплавов с цветными металлами.
4) пиротехника и электровакуумная техника.
Керамика и огнеупоры. Значительная доля мирового производства циркониевых концентратов используется для изготовления огнеупорных изделий и в производстве специального фарфора. В качестве огнеупорного материала применяют чистую двуокись циркония и бадделеитовые и цирконовые рудные концентраты.
Двуокись циркония плавится при температуре 2700—2900°, минерал циркон — при 2430°. Однако примеси, особенно Fe2O3, снижают температуру плавления этих соединений. Недостатком чистой двуокиси циркония как огнеупорного материала является термическая неустойчивость, проявляющаяся в растрескивании нагретых до высокой температуры изделий из двуокиси циркония при их охлаждении. Это явление обусловлено наличием у двуокиси циркония полиморфных превращений. Переход одной модификации в другую связан с объемными изменениями, которые являются причиной растрескивания. Явление растрескивания устраняется добавками к двуокиси циркония стабилизаторов — окислов магния или кальция. Последние, растворяясь в двуокиси циркония, образуют твердый раствор с кубической кристаллической решеткой, которая сохраняется как при высокой, так и низкой температуре. Этим устраняется растрескивание. Для образования твердого раствора с кубической решеткой достаточно к двуокиси циркония добавить 4% MgO.
Из двуокиси циркония или минералов бадделеита и циркона изготовляют огнеупорный кирпич для металлургических печей, тигли для плавки металлов и сплавов, огнеупорные трубы и другие изделия.
Циркониевые минералы или двуокись циркония добавляют в некоторые сорта фарфора, применяемого для изготовления изоляторов на линиях электропередач высокого напряжения, в высокочастотных установках, запальных свечах двигателей внутреннего сгорания. Циркониевый фарфор обладает высокой диэлектрической постоянной и малым коэффициентом расширения.
Эмали и стекло. Двуокись циркония и циркон (очищенный от примеси железа) нашли широкое применение в качестве составной части эмалей. Они сообщают эмали белый цвет и кислотоустойчивость и вполне заменяют применяемую для этих целей дефицитную окись олова. Циркон и двуокись циркония вводят также в состав некоторых сортов стекла. Добавки ZrO2 повышают устойчивость стекла против действия растворов щелочей.
Стали и сплавы с цветными металлами. Высокое сродство циркония к кислороду и азоту обусловливает применение его как активного раскислителя и деазотизатора стали. Очистка стали от кислорода и азота приводит к получению мелкозернистой структуры, обладающей повышенными механическими свойствами Кроме того, цирконий связывает серу, устраняя красноломкость стали. Цирконий является также ценным легирующим элементом V, входит в состав некоторых сортов броневых никельциркониевых сталей (вместе с 2% Ki вводят 0,3 Zr), сталей для орудийных поковок, нержавеющих, жароупорных и некоторых других. В нeкоторых сортах хромистых сталей содержание циркония достигает 2%.
Цирконий вводят в расплавленную сталь в виде ферроциркония и ферросиликоциркония. Ферроцирконий содержит до 40% Zr, около 10% Si и 8—10% Al. Ферросиликоцирконий содержит от 20 до 50% Zr и от 20 до 50% Si.
Имеют также практическое значение добавки циркония к меди: сплавы меди с цирконием, содержащие от 0,1 до 5% Zr, способны к упрочнению, которое достигается термической обработкой (закалка и упрочняющий отпуск). Предел прочности при растяжении достигает 50 кг/мм2, что на 5% выше прочности неотожженной меди. При нагревании изделий из чистой меди (проволоки, листов, труб) до 200° их прочность сильно падает вследствие снятия наклепа. Добавки циркония повышают температуру отжига меди до 500°. Небольшие добавки циркония к меди, повышая ее прочность, снижают лишь в незначительной степени электропроводность.
Цирконий вводится в медь в виде лигатурного сплава, содержащего 12—14% Zr, остальное медь.
Сплавы меди с цирконием применяют для изготовления электродов точечной сварки, для электропроводов в тех случаях, где требуется высокая их прочность.
В последние годы получили распространение сплавы магния, легированные цирконием. Небольшие добавки циркония способствуют получению мелкозернистых магниевых отливок, что приводит к повышению прочности металла.
Высокой прочностью обладают магниевые сплавы, легированные цирконием и цинком. Прочность сплава магния с 4—5% Zn и 0,6—0,7% Zr вдвое выше, чем обычного сплава Сплавы этого типа не проявляют ползучести до 200° и рекомендованы как конструкционные материалы для реактивных двигателей.
Цирконий добавляется (в виде кремнециркониевого сплава) в свинцовистые бронзы Он обеспечивает дисперсное распределение свинца и полностью предотвращает сегрегацию свинца в сплаве. Высокой прочностью и электропроводностью обладают меднокадмиевые сплавы, содержащие до 0,35% Zr.
Добавки 0,02—0,1% Zr в медноникелевые сплавы устраняют вредное влияние свинца на свойства этих сплавов.
Рекомендуется добавление циркония в марганцовистую латунь, алюминиевые бронзы и бронзы, содержащие никель.
Сплав циркония со свинцом и титаном (33% Zr, 53% Pb, 11% Ti) обладает хорошими пирофорными свойствами.
Цирконий входит в состав некоторых антикоррозионных сплавов. Так, сплав, состоящий из 54% Nb, 40% Ta и 6—7% Zr, предложен как заменитель платины.
Применение металлического циркония. Металлический цирконий до последнего времени применяли преимущественно в виде порошка и, в более ограниченном масштабе, в виде компактного металла.
Высокое сродство циркония к кислороду, низкая температура воспламенения (180—285°) и большая скорость сгорания позволили применить тонкий порошок циркония в качестве воспламенителя в смесях для капсулей-детонаторов, а также для фотовспышек. В смеси с окислителями [Ba(NO3)2, KClO3] он образует бездымный порох.
В электровакуумной технике используют прежде всего геттерирующие свойства циркония (способность поглощать газы — О2, N2, Н2, CO, H2O). Для этих целей применяют ковкий цирконий или используют порошкообразный цирконий, который наносят на детали горячей арматуры (аноды, сетки и др.).
Цирконий применяют также как подавитель эмиссии сетки в радиолампе. С этой целью суспензия из тонкого порошка гидрида циркония в смеси с ксиленом, амилацетатом или другим органическим веществом намазывают на сетку. Органическое вещество затем испаряется. При нагревании сетки до 1100°в вакууме гидрид разлагается и цирконий остается на поверхности сетки.
Циркониевые листы применяют в рентгеновских трубках с молибденовыми антикатодами. Они служат здесь в качестве фильтра для повышения монохроматичности рентгеновского излучения.
Возможности использования металлического циркония далеко не исчерпаны и ограничивались до последнего времени лишь малым количеством и высокой стоимостью ковкого металла.
В связи с промышленным освоением производства ковкого циркония намечаются следующие области его использования: в химическом машиностроении (детали центрифуг, насосов, конденсаторов и др.); в общем машиностроении (поршни, шатуны, тяги и другие детали); в турбостроении (лопасти турбин и другие детали) и в производстве медицинского инструмента,
В последние годы привлечено внимание к использованию чистого циркония (свободного также и от примеси гафния) в качестве конструкционного материала в установках по производству атомной энергии Наряду с высокой температурой плавления к высокими антикоррозионными свойствами чистый цирконий имеет малое поперечное сечение захвата тепловых нейтронов (0,22—0,4 барна), что выгодно отличает его от других тугоплавких и коррозионноустойчивых металлов, в том числе и гафния
В связи с этим ведутся исследования по разработке производственных способов получения чистого циркония, свободного от примеси гафния.