» » Принципы выбора режимов отжига меди и ее сплавов
20.01.2015

При разработке технологии термической oбработки меди и ее сплавов приходится учитывать две их особенности: высокую теплопроводность и активное взаимодействие с газами при нагреве. При нагреве тонких изделий и полуфабрикатов теплопроводность имеет второстепенное значение. При нагреве массивных изделий высокая теплопроводность меди является причиной более быстрого и равномерного их прогрева по всему сечению по сравнению, например, с титановыми сплавами.
В связи с высокой теплопроводностью при упрочняющей термической обработке медных сплавов не возникает проблемы прокаливаемости. При используемых на практике габаритах полуфабрикатов и изделий они прокаливаются насквозь.
Медь и сплавы на ее основе активно взаимодействуют с кислородом и парами воды при повышенных температурах, по крайней мере, более интенсивно, чем алюминий и его сплавы, В связи с этой особенностью при термической обработке полуфабрикатов и изделий из меди и ее сплавов часто применяют защитные атмосферы, в то время как в технологии термической обработки алюминия защитные атмосферы встречаются редко.
Отжиг меди и ее сплавов проводят с целью устранения тех отклонении от равновесном структуры, которые возникли в процессе затвердевания или в результате механического воздействия либо предшествующей термической обработки.
Гомогенизационный отжиг заключается в нагреве слитков до максимального возможной температуры, не вызывающей оплавления структурных составляющих сплавов. Ликвационные явления в меди и латунях развиваются незначительно, и нагрев слитков под горячую обработку давлением достаточен для их гомогенизации.
Основными сплавами меди, нуждающимися в гомогенизационном отжиге, являются оловянные бронзы, так как составы жидкой и твердой фаз в системе Cu-Sn сильно отличаются, в связи с чем развивается интенсивная дендритная ликвация.
В результате гомогенизационного отжига повышается однородность структуры и химического состава слитков. Гомогенизационный отжиг - одно из условий получения качественного конечного продукта.
Принципы выбора режимов отжига меди и ее сплавов

Рекристаллизационный отжиг — одна из распространенных технологических стадий производства полуфабрикатов меди и сплавов на ее основе.
Температуру начала рекристаллизации меди интенсивно повышают Zr, Cd, Sn, Sb, Cr, в то время как Ni, Zn, Fe, Co оказывают слабое влияние. Повышение температуры начала рекристаллизации при одновременном присутствии нескольких элементов неаддитивно, но незначительно превышает вклад от наиболее эффективно действующей примеси. В определенных случаях, например, при введении в медь свинца и серы, суммарный эффект выше, чем отдельных эффектов. Раскисленная фосфором медь в отличие от кислородсодержащей меди склонна при отжиге к сильному росту зерна Порог рекристаллизации в присутствии фосфора сдвигается в область более высоких температур.
Критическая степень деформации для бескислородной меди с величиной зерна порядка 2*10в-2 см после отжига при 800°С в течение 6 ч составляет примерно 1%. Примеси, например железо, увеличивают критическую степень деформации, которая для латуней составляет 5—12% (рис. 44).
Принципы выбора режимов отжига меди и ее сплавов
Принципы выбора режимов отжига меди и ее сплавов

На температуру рекристаллизации латуней также влияет предшествующая обработка, в первую очередь степень холодной деформации и величина зерна сформировавшегося при этой обработке. Так, например, время до начала рекристаллизации латуни Л95 при температур 440° С составляет 30 мин при степени холодной деформации 30% и 1 мин при степени деформации 80%.
Величина исходного зерна действует на процесс кристаллизации противоположно повышению степени деформации. Например, в сплаве Л95 с исходным зерном 30 и 15 мкм отжиг после 50% деформации при температуре 440°С приводит к рекристаллизации через 5 и 1 мин соответственно. В то же время величина исходного зерна не влияет на скорость рекристаллизации, если температура отжига превышает 140°С.
На рис. 45 приведены данные по влиянию состава α-латуней на температуру отжига (степень деформации 45% время отжига 30 мин), которая обеспечивает получение заданной величины зерна. При одинаковых условиях деформации и отжига с увеличением содержания цинка величина зерна уменьшается, достигает минимума а затем растет. Так, например, после отжига при 500°С в течение 30 мин величина зерна составляет: в меди 0,025 мм; в латуни с 15% Zn 0,015 мм, а в латуни 35% Zn 0.035 мм. На рис 45 также видно, что в α-латунях зерно начинает расти при относительно низких температурах и растет вплоть до температур солидуса В двухфазных (α+β)- и специальных латунях рост зерна, как правило, происходит лишь при температурах, при которых остается одна β-фаза. Например, для латуни Л59 значительное увеличение зерна начинается при отжиге выше температуры 750° С.
Температуру отжига латуней выбирают при мерно на 250—350° С выше температуры начала рекристаллизации (табл. 16).
Принципы выбора режимов отжига меди и ее сплавов

При отжиге сплавов меди с содержанием 32-39% Zn при температурах выше α⇔α+β-перехода выделяется β-фаза что вызывает неравномерный рост зерна. Отжиг таких сплавов желательно проводить при температурах, не превышающих линию α⇔α+β-равновесия системы Cu-Zn. В связи с этим латуни, лежащей по составу вблизи точки максимальной растворимости цинка в меди, следует отжигать в печах с высокой точностью регулировки температуры и большой однородностью распределения ее по объему меди.
Принципы выбора режимов отжига меди и ее сплавов

На рис. 46 приведены оптимальные режимы отжига простых латуней по результатам обобщения технологических рекомендаций, накопленных в отечественной и мировой практике. Обнаруживается тенденция к повышению температуры полного отжига латуни с увеличением содержания в них цинка.
При выборе режимов рекристаллизационного отжига латуней следует учитывать, что сплавы, лежащие вблизи фазовой границы α/α+β (рис. 46), из-за переменной растворимости цинка в меди могут термически упрочняться. Закалка латуней, содержащих более 34% Zn, делает их склонными к старению (рис. 47), причем способность к упрочнению при старении растет с увеличением содержания цинка до 42%. Практического применения этот вид термического упрочнения латуней не нашел. Тем не менее скорость охлаждения латуней типа Л63 после рекристаллизационного отжига влияет на их механические свойства. Возможность распада пересыщенных растворов в α-латунях, содержащих более 34% Zn, и в α+β-латунях следует также иметь в виду при выборе режимов отжига для уменьшения напряжений. Сильная холодная деформация может ускорять распад пересыщенных α- и β-растворов при отжиге.
Принципы выбора режимов отжига меди и ее сплавов

По литературным данным, температура начала ре кристаллизации латуни Л63 колеблется от 250 до 480° С. Наиболее мелкозернистая структура в сплаве Л63 образуется после отжига при температурах 300—400° С. Чем выше степень предшествующей холодной деформации, тем меньше величина рекристаллизованного зерна и больше твердость (рис. 48) при одинаковых условиях отжига.
Качество отожженного материала определяется не только его механическими свойствами, но и величиной рекристаллизованного зерна. Величина зерна в полностью рекристаллизованной структуре довольно однородна. При неправильно установленных режимах рекристаллизационного отжига в структуре четко обнаруживаются две группы зерен различной величины. Эта так называемая двойная структура особенно нежелательна при операциях глубокой вытяжки, изгиба или полировки и травлении изделии.
Принципы выбора режимов отжига меди и ее сплавов

С увеличением размеров зерна до определенного пределa штампуемость латуней улучшается, но качество поверхности ухудшается. На поверхности изделия при величине зерна более 40 мкм наблюдается характерная шероховатость «апельсиновая корка».

Этапы эволюции деформированной структуры значительно растянуты во времени, и поэтому представляется возможным получение частично или полностью рекристаллизованной структуры с мелким зерном путем варьирования времени отжига. Полуфабрикаты с не полностью рекристаллизованной структурой с очень малым размером зерна штампуются без образования «апельсиновой корки».
Неполный отжиг, продолжительность которого определяется степенью предварительной деформации, проводят в интервале 250—400° С Для соблюдения точного технологического режима такой отжиг следует проводить в протяжных печах, где строго контролируется рабочая температура и продолжительность выдержки (скорость протяжки).
Неполный отжиг применяют преимущественно с целью уменьшения остаточных напряжений, которые могут приводить к так называемому «сезонному растрескиванию. Этот вид коррозии, присущий латуням с содержанием более 15% Zn, заключается в постепенном развитии межкристаллитных трещин при одновременном воздействии напряжении (остаточных и приложенных) и специфических химических реагентов (например, растворы и пары аммиака, растворы ртутных солей, влажный серный ангидрид, различные амины и т. д.). Считается, что чувствительность латуней к сезонному растрескиванию обусловлена скорее неоднородностью напряжении, чем их абсолютной величиной.
Эффективность отжига для уменьшения остаточных напряжений проверяют испытанием ртутной пробой. Метод испытания ртутной пробой дает качественную оценку наличия остаточных напряжений. Он основан на различном поведении напряженного и ненапряженного материала при воздействии азотнокислой ртути. На напряженном материале в ходе испытания появляются продольные и поперечные трещины, видимые невооруженным глазом. Они появляются в местах растягивающих напряжении, которые могут вызвать разрушение изделия в эксплуатации или при хранении в результате коррозионного растрескивания.
Режимы отжига латуней для уменьшения остаточных напряжении даны на рис. 46 и в табл. 16.