» » Температура плавления и плотность металлов и сплавов
22.04.2015

Температуры плавления почти всех широко используемых в настоящее время металлов приведены в табл. 1. Там же упомянуты некоторые редкие металлы, производство и применение которых непрерывно растет. Как видно, температура плавления металлов охватывает очень большой промежуток от -39 (ртуть) до 3400 °C (вольфрам).
Металлы, имеющие температуру плавления ниже 500—600 °С, называют легкоплавкими. К легкоплавким можно отнести цинк и все другие металлы, расположенные в табл. 1 выше его. Принято также выделять так называемые тугоплавкие металлы, относя к ним те, которые обладают более высокой температурой плавления, чем железо (1539 °С), т. е. по табл. 1 это титан и далее до вольфрама.
Температура плавления и плотность металлов и сплавов

Из данных табл. 1 видно, что плотности металлов при комнатной температуре также имеют очень широкий диапазон. Самым легким металлом является литий, который примерно в 2 раза легче воды. В технике принято выделять группу легких металлов, служащих основой конструкционных металлических материалов в авиации и ракетостроении. К легким металлам относят те, у которых плотность не превышает 5 г/см3. В эту группу входят титан, алюминий, магний, бериллий, литий.
Наряду с плотностью, обозначаемой буквой d, для описания свойств металлов используют обратную величину — удельный объем v=1d (см3 г).
С повышением температуры плотность всех металлов в твердом состоянии уменьшается, удельный объем соответственно увеличивается. Увеличение удельного объема твердого металла, не испытывающего полиморфных превращений, при нагреве на Δt может быть довольно точно описано линейной зависимостью vтвt=vтв20°С (1+βтв Δt), где βтв — температурный коэффициент объемного расширения. Как известно из физики, βтв=3α, где α — температурный коэффициент линейного расширения в данном температурном интервале. У большинства металлов нагрев от комнатной до температуры плавления вызывает увеличение объема на 4 5 %, так что dтвtпл = 0,95/0,96dтв20°С.
Переход металла в жидкое состояние сопровождается в большинстве случаев увеличением объема и соответствующим уменьшением плотности. В табл. 1 это выражено через изменение удельных объемов Δv = 100 (vж — vтв)/vж, где vж и vтв — удельные объемы жидкого и твердого металла при температуре плавления. Можно показать, что Δv = 100 (vж — vтв)/vж = Δd = 100 (dтв — dж)/dтв. Уменьшение плотности при плавлении выражается несколькими процентами. Имеется несколько металлов и неметаллов, у которых наблюдается обратное изменение плотности и удельного объема при плавлении. Галлий, висмут, сурьма, германий, кремний при плавлении уменьшаются в объеме, и поэтому у них Δv имеет отрицательное значение. Для сравнения можно отметить, что для веды Δv = -11%.
Незначительное изменение объема металлов при плавлении свидетельствует о том, что расстояния между атомами в жидком металле мало отличаются от межатомных расстояний в кристаллической решетке. Число ближайших соседей у каждого атома (так называемое координационное число) в жидкости обычно немного меньше, чем в кристаллической решетке. У металлов с плотноупакованными структурами координационное число при плавлении уменьшается с 12 до 10—11, у металлов с о. ц. к. структурой это число меняется с 8 до 6. В жидком металле вблизи точки плавления сохраняется ближний порядок, при котором расположение соседних атомов на расстоянии примерно до трех атомных диаметров сохраняется подобным тому, каким оно было в кристаллической решетке, которая, как известно, обладает еще и дальним порядком. При плавлении у металлов не наблюдается принципиального изменения ряда свойств: теплопроводности, теплоемкости; электропроводность остается того же порядка, что и в твердом металле вблизи точки плавления.
Повышение температуры жидкого металла вызывает не только постепенное изменение всех его свойств, но и приводит к постепенным структурным перестройкам, которые выражаются в понижении координационного числа и постепенном исчезновении ближнего порядка в расположении атомов. Вызываемое повышением температуры увеличение удельного объема жидкого металла может быть приближенно описано линейной зависимостью vжt = vжtпл (1 +βж Δt). Температурный коэффициент объемного расширения жидкого металла существенно больше, чем твердого металла. Обычно βж = 1,5/3βтв.
Сплавы как в твердом, так и в жидком состоянии в общем случае не являются совершенными растворами, и сплавление двух и более металлов всегда сопряжено с изменением объема. Как правило, отмечается уменьшение объема сплава по сравнению с суммарным объемом чистых компонентов с учетом их содержания в сплаве. Однако для технических расчетов можно пренебречь уменьшением объема при сплавлении. В этом случае удельный объем сплава может быть определен по правилу аддитивности, т. е. по значениям удельных объемов чистых компонентов с учетом их содержания в сплаве. Таким образом, удельный объем сплава, который состоит из компонентов А, В, С, ..., X, содержащихся в процентах по массе в количестве а, b, с, ..., х равен
Температура плавления и плотность металлов и сплавов

где vA, vB, vC, vX — удельные объемы чистых компонентов при той температуре, для которой вычисляется удельный объем сплава.
Изменение объема жидкого металла до начала и в процессе кристаллизации предопределяет важнейшее литейное свойство — объемную усадку, которая проявляется, как будет показано позже, в виде усадочных раковин и пористости (рыхлоты) в теле отливки.
Максимально возможная величина относительной объемной усадки отливки равняется Δvmax = 100 (vжt — vтвtпл)/vжt, где vжt — удельный объем жидкого металла при температуре заливки t; tтвtпл — удельный объем твердого металла при температуре плавления.
Экспериментально обнаруживаемая в отливках объемная усадка обычно меньше величины Δvmax. Это объясняется тем, что при заполнении литейной формы происходит охлаждение расплава и может даже начаться кристаллизация, поэтому исходное состояние расплава в литейной форме не характеризуется удельным объемом vtж. Охлаждение затвердевшей отливки до комнатной температуры не сказывается на величине относительной объемной усадки.
В отливках из металлов и сплавов, имеющих отрицательные значения Δv (см. табл. 1), обнаруживается не усадка, а так называемый рост — выдавливание расплава на поверхность отливок.