» » Индукционная плавка
04.02.2015

В последнее время за рубежом вновь возрос интерес к индукционным печам как к возможным агрегатам получения слитков, особенно с использованием в качестве шихты металлизованных окатышей.
Применение печей этого типа в сталеплавильных цехах ограничивается во всем мире целями получения сплавов или лигатур, в связи с чем емкость их, как правило, не превышает 5 т.
В литейных цехах, напротив, работают крупные печи. Самая крупная установка в мире включает в себя 4 печи емкостью по 60 т и мощностью по 20 кВт с общей производительностью 160 т/ч. Используемый лом подогревается до 600 °C.
По целому ряду важнейших параметров печи этого типа предпочтительнее дуговых электропечей. В связи с этим возникают вопросы относительно возможных граничных условий применения их в сталеплавильном производстве. Имеющаяся практика свидетельствует о том, что допустимое напряжение может составлять 3000 В и сила тока 70 000 А. Таким образом, кажущаяся мощность может быть в перспективе повышена до 210 MB*А. Индуцированная действительная мощность, зависящая от толщины стен тигля, относится к кажущейся мощности как 1:5-1:7.
Движение металла в индукционной печи, являющееся в целом весьма положительным с металлургических позиций фактором, при чрезмерной удельной мощности может быть, однако, сопряжено с выбросами металла. По этому показателю удельная мощность крупных печей ограничивается пока что величиной 330 кВт/т металла.
На мощность индукционных печей может существенно повлиять толщина футеровки тигля. Футеровка должна быть достаточно надежной и долговечной. Однако по мере увеличения ее толщины снижается полезная мощность печи, к примеру, для печи емкостью 100 т при кажущейся мощности 210 MB*A она снижается до 38 МВт при толщине стен 15 см и до 28 МВт при толщине стен 40 см. Выбор материала стен также на сегодня является большой проблемой. Кислая футеровка выдерживает большое число плавок, что позволяет иметь расход огнеупоров 0,7 кг/т стали при температуре выпуска стали 1550 °C. Однако такая футеровка годится далеко не для всех случаев и, как правило, не приемлема для выплавки стали из обычного лома из-за невозможности удалить из металла серу и фосфор в этом случае. К тому же углерод и марганец металла будут вступать во взаимодействие с кремнеземом футеровки, что может привести к последствиям, влияние которых необходимо ограничивать.
Удаление таких примесей, как кремний, сера, марганец, из металла можно в известной мере обеспечить вдуванием соответствующих порошкообразных материалов без чрезмерного износа футеровки. Можно также обеспечить и кипение металла с известным понижением мощности в этот период во избежание выбросов.
С позиций усвоения легирующих, расплавления легковесной шихты, удаления газов из металла и снижения его газонасыщенности индукционные печи обладают несомненными преимуществами перед дуговыми. Наряду с этим индукционные печи по принципу работы являются по существу агрегатами непрерывного действия и поэтому могут быть более пригодными для передела металлизованной шихты. Важно и то, что работа индукционных печей не сопровождается такими значительными колебаниями электрических параметров, как работа дуговых печей.
Капитальные и эксплуатационные затраты на производство стали в индукционных и дуговых печах близки между собой. Ho при организации непрерывного процесса плавки можно ожидать снижения затрат в случае использования индукционных печей вследствие упрощения конструкции зданий и газоочистки, устранения затрат на борьбу с шумом, меньших затрат на обслуживающий персонал и огнеупоры, более гибкого регулирования температуры и химического состава стали.
Использование индукционных печей для переплава металлизованных окатышей имеет ряд дополнительных преимуществ.
Вследствие интенсивного движения металла в индукционной печи металлизованные окатыши могут быстро увлекаться в глубь ванны, что предохранит их от окисления в процессе плавления. К тому же само плавление происходит без перегрева окатышей, что обеспечивает минимальный угар железа и выделение пыли из печи.
При заданной подводимой мощности к печи температура металла легко регулируется скоростью подачи окатышей.
Могут быть сокращены капитальные затраты, поскольку установка может иметь два тигля, один из которых находится в ремонте, другой в работе. В этом случае достигается высокая степень использования установленной мощности.
Малое время- соприкосновения окатышей с атмосферой, а также отсутствие зон высоких температур, как это имеет место под электрическими дугами в дуговой печи, позволят получать очень низкие содержания азота в металле — на уровне их содержаний в металле, выплавленном в кислородных конверторах.
Что касается металлургических процессов в индукционной печи при переплаве металлизованных окатышей, то они по существу сводятся к двум процессам: удалению фосфора и удалению углерода с одновременным довосстановлением содержащихся в окатышах окислов железа. Содержание серы в окатышах при газовом восстановлении может быть получено на низком уровне.
На ряде индукционных установок в ФРГ емкостью от нескольких десятков килограммов до двух тонн были проведены достаточно разносторонние эксперименты по переплаву металлизованных окатышей, которые позволили выявить многие особенности этого процесса, его преимущества и недостатки, а также в известной мере определить перспективы на будущее.
Скорость нагрева губчатого железа в индукционной тигельной печи джоулевым теплом зависит как от параметров самого губчатого железа, так и печи. При проведении сравнительных экспериментов в двух печах мощностью 54 и 30 кВт с частотой тока соответственно 250 и 2000 Гц при массе плавки от 4 до 22 кг, с использованием губчатого железа пяти сортов с колебаниями размеров кусков от 2-16 до 6-40 мм, насыпной плотности от 1,01 до 2,52 г/см3 и степени металлизации от 83,9 до 99,2 были установлены следующие основные закономерности. Величина индуктируемой в садке мощности и скорость нагрева губчатого железа возрастали с увеличением частоты тока и мощности печи, а также величины кусков губчатого железа, степени его металлизации и насыпной плотности. Однако при наличии выявленной технической возможности расплавления губчатого железа в индукционной печи в отсутствие какого-то количества предварительно расплавленного металла, так называемого "болота", была установлена нецелесообразность такого процесса. Губчатое железо начинало плавиться на дне тигля, а находившийся выше слой губчатого железа вниз не сходил и спекался настолько прочно, что дальнейшая загрузка губчатого железа оказывалась невозможной. Попытки расплавить этот слой могут привести к перегреву уже расплавленного металла и прогару тигля. Чтобы получить необходимую для плавления высокую индуктируемую мощность, необходимы высокочастотные установки, которые значительно более дороги и к тому же металл в них очень слабо перемешивается. Наконец, необходимый нагрев губчатого железа достигался при очень высоком расходе электроэнергии, т.е. при значительно более низком к.п.д. печи, чем при плавлении скрапа.
Дальнейшие опыты с высокочастотной печью (2000 Гц) емкостью 120 кг подтвердили неперспективность использования печей такого типа для плавления губчатого железа. Даже при загрузке губчатого железа на чистую поверхность предварительно расплавленного металла окатыши быстро расплавлялись только в начальный период их загрузки, не увлекаясь при этом в глубь ванны. В дальнейшем начинал образовываться шлак, поверхность которого вследствие излучения и охлаждающего эффекта губчатого железа покрывалась коркой, что препятствовало поступлению свежих порций губчатого железа в металлическую ванну.
Гораздо более обнадеживающими были эксперименты, проведенные в низкочастотной печи (150 Гц) емкостью 1,5 т, в ходе которых переплавлялось губчатое железо со степенью металлизации от 87,6 до 97,0 с крупностью кусков 6-40 мм. Каждую плавку начинали при наличии в печи около 1 т расплавленного металла и дополнительно загружали около 300 кг губчатого железа, после расплавления выпускали около 250 кг металла и скачивали шлак. При этом расход электроэнергии в случае выплавки стали с 0,5 % С составил в среднем 2617 МДж/т и в случае выплавки стали с 1,8 % 2318 МДж/т. На каждый 1 % снижения степени металлизации расход электроэнергии увеличивался на 36 МДж на 1 т выплавленного металла. Длительность плавления каждой порции губчатого железа составляла 16 мин, при этом температура ванны вследствие недостаточности подводимой мощности снижалась на 90 °C. Таким образом, производительность плавления определялась не скоростью плавления, а подводимой мощностью. Поскольку пустая порода губчатого железа имела кислый характер (2,5 % SiO2; 0,1 % CaO и 0,2 % Al2O3), то износ основной футеровки тигля был довольно значительным, увеличивался сверху вниз и достигал 15 % от начальной толщины, составляющей 13 см. Доля восстановленных окислов железа за время плавки составляла около 65 %. В тех случаях, когда шлак не раскислялся кремнием и марганцем, он был пористым и быстро охлаждался с поверхности, что вынуждало прекращать загрузку губчатого железа для скачивания шпака, если степень металлизации губчатого железа не превышала 90 %.
На специально построенной на заводе в Оберхаузене индукционной печи промышленной частоты емкостью 2 т и установленной мощностью 750 кВт было проведено изучение взаимодействия шлака и огнеупорной футеровки тигля, а также реакций на границах раздела фаз губчатое железо - расплав и расплав - шлак. Толщина кладки стен составляла в начале кампании 100 мм и допускалось ее снижение до 40 мм. Использовалось губчатое железо, полученное на установке Пурофер с различным содержанием углерода и пустой породы, а также степени восстановления (табл. 27).
Индукционная плавка

При переплаве железа марки А с низким содержанием фосфора и кислой пустой породой можно было работать на кислых шлаках и кварцевой футеровке тигля. При этом насыщенный шлак содержал около 82 % SiO2; 10 % FeO и 8 % Al2O3. Износа нижней части тигля не наблюдали, но верхняя его часть изнашивалась довольно быстро, ко не за счет химического взаимодействия со шлаком, а в результате попадания на стенки окисленных капель металла и образования при этом легкоплавких силикатов. Устранено это явление может быть путем изготовления этой части тигля из глинозема.
При переплаве губчатого железа марки В основность шлака составляла около 1,5 и количество его не превышало 110 кг/т. Такой шлак разъедал футеровку из плавленого или обожженного магнезита, тигель из материала, содержащего 80 % MgO и 20 % Cr2O3, стоял в течение трех недель при трехсменной работе.
При изучении металлургических процессов при переплаве губчатого железа было отмечено два важных обстоятельства.
1. При выбранных электрических параметрах печи металл в ней интенсивно перемешивался и губчатое железо быстро увлекалось в глубь ванны. Благодаря этому, а также наличию кислорода и углерода в самом губчатом железе реакция обезуглероживания получала большое развитие и протекала с высокими скоростями, несмотря на неблагоприятное соотношение поверхности ванны к ее объему в индукционной печи по сравнению с дуговой печью. В экспериментах скорость обезуглероживания достигала 1 кг/ (м2*мин) и предположительно может быть повышена. Благодаря этому скорость расплавления губчатого железа в индукционной печи емкостью 100 т может достигать 50 т/ч.
2. Температура шлака в индукционной печи не может превышать температуру металла и поскольку к тому же фосфор в губчатом железе находится в пустой породе, то существенно облегчаются возможности получения низкого содержания фосфора в металле. Для стали, выплавленной из губчатого железа марки В, типичным был следующий химический состав, %: С 0,1; Mn 0,04; P 0,011; S 0,005 и N2 0,0015. Эти эксперименты показали, что в случае периодической загрузки губчатого железа при правильном Выборе геометрических и электрических параметров печи особых технических трудностей в процессе его переплава не возникает, однако стоимость плавления, отнесенная к выходу годного металла, выше, чем при плавлении скрапа, увеличивается расход электроэнергии и раскислителей, выше износ футеровки, большие потери времени на скачивание шлака. Поэтому переплав губчатого железа в индукционной Печи может быть экономически целесообразен, если стоимость его будет меньше стоимости скрапа или возможно будет найти источники компенсации этих потерь (большая однородность и чистота губчатого железа, удобство его загрузки и транспортировки и т.д.).
Особенно большие преимущества могут быть получены при обеспечении непрерывной загрузки и выпуска металла. В этом случае в принципе возможны резкое сокращение ручных операций, достижение высокой степени автоматизации процесса, работа при полном тигле на максимальной мощности при соответствии подводимой и потребляемой электрической мощности и обеспечении стационарного процесса плавления, температуры и химического состава металла.
По данным, при периодическом процессе, но с оставлением в тигле 30-60 % металла потребляемая электрическая мощность составляет 75-100 % от номинальной (рис. 101).
Проведенная на серии экспериментов в печи емкостью 130 кг проверка этих предположений в значительной степени их подтвердила, но выявила и ряд новых особенностей процесса, сопряженных с затруднениями.
В течение 970 мин было проплавлено 116 кг губчатого железа со степенью металлизации 96,9 % в кислом тигле с нагревом металла до температуры максимально 1600 °C при содержании в нем углерода от 1,2 до 3,5 %. Загрузка губчатого железа производилась непрерывно через трубу с внутренним диаметром в нижней части 80 мм, непрерывный выпуск металла обеспечивался наклонным положением тигля в ходе экспериментов. Износ тигля при температуре ванны ниже 1500 °C был незначительным, но при температуре выше 1560 °C уже через час наблюдался сильный износ, особенно в верхней части. Расход электроэнергии на 1 т губчатого железа сильно зависел от подводимой мощности и снижался вдвое при увеличении ее с 42 до 78 кВт (рис. 102). При этом производительность плавления повышалась с 10 до 28 т/м2, однако температура металла и содержание в нем углерода возрастали. Таким образом, работа с полным тиглем и максимальной подводимой мощностью может существенно повысить экономичность процесса. Окончательно не подтвердилось предположение о том, что губчатое железо из-за малой его теплопроводности будет расплавляться медленнее, чем скрап. Скорость плавления при стационарном состоянии процесса определялась только количеством подводимого тепла. Поддержание требуемого содержания углерода при достижении стационарности процесса не вызывает затруднений, несмотря на протекание реакций обезуглероживания, и непрерывном растворении в ванне губчатого железа с содержанием углерода, отличным от содержания его в ванне.
Индукционная плавка

Проведенные эксперименты, хотя и не дали окончательного ответа относительно возможной экономической эффективности процесса переплава губчатого железа в промышленных условиях, но прояснили очень многие технологические и экономические аспекты проблемы. Достаточно отчетливо установлено, что количество шлака должно быть минимальным, а степень металлизации максимальной. В этом случае протекание процесса существенно облегчается, но следует отметить, что одновременно возрастает и стоимость губчатого железа. Работа на кислых шлаках, возможна при использовании только кислой футеровки и при содержании фосфора в губчатом железе не выше допустимого в стали. Ho температура нагрева металла в этом случае не должна превышать 1500 °C. Использование магнезитохромитовых тиглей позволяет нагревать металл до более высоких температур, но необходимость нейтрализации кремнезема шлака влечет за собой увеличение расхода раскислителей, электроэнергии, шлакообразующих и снижение выхода годного. Во всех случаях необходима принимать меры против подстуживания шлака, а возможно необходимо будет разрабатывать и способы его подогрева.
Весьма важным обстоятельством является обеспечение таких геометрических размеров тигля и электрических параметров установки, при которых средняя часть поверхности металла в тигле будет свободна от шлака, благодаря чему губчатое железо будет попадать непосредственно на металл и увлекаться в его толщу. В противном случае необходимо будет принятие специальных мер для прохождения губчатого железа через толщу шлака. Согласно предложению фирмы "Тиссен" это может быть обеспечено при отношении удельной мощности печи к корню квадратному из частоты, равному 49,5.
He исключено, что учет всех этих ограничений приведет к созданию какого-то процесса, в котором индукционная печь будет выступать только в качестве агрегата для непрерывного плавления металлизованной шихты, а остальные операции (подогрев, раскисление, легирование, доводка по химическому составу и т.д.) будут осуществляться в агрегатах внепечной металлургии. В качестве такого агрегата в первую очередь может представлять интерес агрегат типа печь - ковш, разработанный фирмами ASEA и SKF, в котором может быть осуществлен весь комплекс отмеченных выше операций.
Тем не менее губчатое железо, получаемое процессом Хоганес, уже в течение длительного времени используется в качестве шихты в количестве от 10 до 60 % при выплавке в кислых индукционных печах емкостью до 12 т инструментальных и конструкционных сталей, сталей тяжелых поковок и в некоторой степени нержавеющих сталей, а также в основных печах, главным образом при выплавке последних. При этом обрабатываемость, чистота и однородность стали существенно повышаются.
Губчатое железо используется в виде брикетов длиной 75 мм и диаметром около 88 мм с содержанием 0,17% С и около 1 % O2. Такое соотношение между кислородом и углеродом позволяет поддерживать ванну в состоянии умеренного кипения и обеспечивает получение, если необходимо, даже и очень низких содержаний углерода. Реакция между этими элементами начинается уже при 700 °C, однако взаимодействие их с хромом и другими, имеющими к ним сродство элементами большого развития не получает. Это открывает возможность сочетать использование губчатого железа с более углеродистым феррохромом, чем обычно применяемый при выплавке низкоуглеродистых сталей.
Во избежание излишних потерь хрома и повышения содержания углерода в расплаве рекомендуется следующий порядок загрузки индукционной печи.
Никель и молибден загружаются на дно печи, затем подаются брикеты губчатого железа, после расплавления этой части шихты производится скачивание шлака и только затем присадка скрапа и оставшихся легирующих добавок.
Извлечение хрома, расход электроэнергии и производительность печей находятся на том же уровне, что и при использовании обычной шихты.
В табл. 28 приведены результаты по извлечению легирующих элементов при выплавке в 12-т индукционной печи аустенитной нержавеющей стали с загрузкой 12,3 % губчатого железа, 24,0 % оборотного скрапа, 9,25 % никеля, 18,5 % феррохрома, 2,85 % ферромолибдена, 31,0 % стального скрапа (0,05 % С) и 2,1 % ферромарганца.
Фирмы "Тиссен" и "Броун Бовери" заключили соглашение о реализации совместного изобретения, касающегося конструкции мощных индукционных печей и процесса передела в них металлизованного сырья, получаемого по способу Пурофер. Изобретение предусматривает создание печей промышленной частоты емкостью свыше 100 т с удельной мощностью 350 кВт/т при частоте тока 50 Гц или 385 кВт/т при частоте тока 60 Гц. Металлическая шихта будет непрерывно подаваться на оголенную от шлака вспученную под влиянием электромагнитного движения центральную часть поверхности металла в тигле. При этом предполагается использовать опыт работы существующей печи емкостью 60 т, мощностью 21 МВт, используемой для плавки чугуна, и реализовать процесс на печи емкостью свыше 100 т и мощностью 45 МВт.
Индукционная плавка